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Abstract: The structural identification (SI) problem of control objects has not been solved. The 7 
formalization and interpretation complexity of the structure concept is the main problem. In 8 
identification systems, the form of the model (its structure) choice is intuitive and bases on the 9 
experience and knowledge of the researcher in most cases. The task of parametric identification is 10 
often interpreted as SI. It introduces certain confusion in understanding of the task and decision-11 
making. This is two different areas of research. The structural identification problem is multifaceted 12 
and includes many subtasks, and their solution gives the final result. Some tasks have been solved. 13 
The purpose of this work is to review existing approaches and methods to the structural 14 
identification problem of control objects from a system perspective. It is necessary to give the SI 15 
problem statement at the multiple-informational level to reflect the difficulties of formalizing SI. 16 
New directions to analyse that were not SI areas until now. 17 

Keywords: excitation constancy; geometric structure; Lyapunov exponent; structural identification; 18 
structural identifiability; S-synchronization 19 

1. Introduction 20 

The identification problem occupies one of the central places. Parametric estimation (PE) and 21 
structure selection are the main directions of identification theory. PE is the basis of the identification 22 
theory and has now received the most complete development [1-6]. Structural identification (SI) has 23 
practically not been developed. This has several explanations. First, these are SI problem formalizing 24 
difficulties. They cause other problems, the solution of which many authors get on an intuitive level. 25 
This approach does not provide a general method and approach to solving a wide class of SI 26 
problems. Next, we consider problems that complicate the SI problem solution. 27 

Despite on the SI complexity, many publications devoted to the consideration and study of the 28 
problem. One of the first reviews containing the method for the structure model selection proposed 29 
in [7]. Some aspects and approaches to structural identification are considered in [3, 8-10]. Proposed 30 
methods base on a selective parametric approach. There are approaches to choosing the model 31 
structure that have not received proper coverage in the literature, but are effective. 32 

This work purpose is to consider some SI tasks from a systemic perspective. We consider the 33 
structure concept, which is widely interpreted by various authors. These interpretations do not 34 
always reflect the structure essence when solving applied identification problems. Next, the 35 
structural identification problem formulation considers. Difficulties arising from solving the SI 36 
problem of static systems considered. We analyse methods, and approaches used to solve structural 37 
identification in various problems. 38 

2. Structure Concept in Identification Tasks 39 

The structure concept does not have a clear definition. This concept interprets very widely in 40 
modern science. Each knowledge area gives its own interpretation. B. Green [11] uses the 41 
mathematical structure (ST) concept, and interprets ST as any mathematical theory. In relation to 42 
living systems, ST [12] is a set of stable connections in an object. Structure or building is the internal 43 
organization of something. The internal building related to categories of the whole and its parts. 44 

In the automatic control theory (TAS) [13, 14], the structure is the mathematical equations set 45 
describing processes in the system. TAS uses the system concept with a variable structure [14]. Here, 46 
the structure interprets as a restructuring (change) of system parameters. In control systems, the block 47 
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diagram concept widely uses, which reflects the system building (composition). The data structure 48 
in computer science is an analog of a block diagram in TAS.  49 

The ST concept widely uses in mathematics [11, 13]. This term is synonymous with various 50 
abstract concepts and categories. Often, the structure in the mathematical sense is a system of some 51 
equations. In the theory of systems [16], ST understands as the system building, the organization of 52 
its elements.  53 

Highlight two features of the term structure interpretation. Firstly, the structure is treated as a 54 
complex system. As a rule, the structure covers many technical, social, and organizational systems. 55 
ST understands as an abstract category or set of objects used to describe and analyse complex 56 
processes and phenomena. This ST interpretation corresponds to the identification theory most 57 
adequately. We will adhere to this SI interpretation.  58 

The identification theory considers in the wide and narrow sense [17]. ST is a research problem 59 
in a wide sense, i.e., the choice of the form for operators or equations describing the processes in the 60 
system. Note that the choice problem of the mathematical model structure under uncertainty is far 61 
from its final solution. The SI problem complexity consists in the absence of regular methods for 62 
model structure synthesizing. Note mathematical objects describing the structural indicators of the 63 
system do not exist. It is intuitively clear that there is a structure, but SI cannot be described in a 64 
formalized language. SI difficulties considered in this paper, analyzed in [18]. 65 

Besides the above interpretation, ST understands as a mathematical object described by a 66 
functional mapping. Such ST has a graphical representation and describes the processes in the system 67 
in a generalized form. The specified object is called a virtual portrait defined in some space. Many 68 
authors interpret the SI concept from the perspective of applied problems (see e.g., [19-21]). 69 

3. Structural Identification Problem Statement 70 

As noted in the introduction, the structural identification problem is difficult to formalize. We 71 
give one of the possible SI problem formulations based on the multiplicity-information approach [22].  72 

Consider the system described by the equation 73 

 
( ) ( , , ) ( ),

( ) ( ) ( ),T

X t F X A t Bu t

y t C X t t

= +

= +
 (1) 74 

where mX R  is state vector, : m k mF   →JR R R  is smooth continuously differentiable m -75 
dimensional vector function, t J R , yR  is output, uR  is input, kAR  is parameter vector, 76 

mBR , R   is piecewise continuous bounded perturbation, mСR . 77 

A priori information 78 

 ( , , , , ) X u

a S S S S a a aX u      I G S G I I I  (2) 79 

set containing available information about the vector function 
SF S  structure, parameters 80 

( ), SA B  G , characteristics of input, output, and perturbation. 81 

The set 
SS  contains the information about the operator class describing the system (1) dynamics, 82 

as well as some structural parameters 
SA . The 

aI  level determines the 
SA  cardinality. In 83 

identification tasks, the formation 
SS , 

SA  bases on the experience and intuition of the researcher. 84 

Given the informalizability 
SS  in (2), the subsets 

SS , 
SA  cardinality can set fuzzy, and most often, is 85 

uncertain. Therefore, the SI problem solution complicates. 86 
Experimental information 87 

   0( ), ( ), ,o ku t y t t t t=  =I J .  88 

The perturbation   may have a different nature [23, 24].   is limited. 89 

Consider the operator ˆ ( ) m

iF  R , which is a contender for the formation of the vector-function 90 

( , , )F X A t  structure in (1). Let ˆ ( )i SF  S  and is parametrized accurate to a pair ( )ˆ ˆ,i i S SA B  A S . 91 

Apply the model 92 
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 ˆˆ ˆ ˆ ˆ( ) ( , , ) ( )X t F X A t Bu t= + .  93 

Problem: use a priori 
aI  and experimental 

oI  information and estimate the vector-function F  94 

structure in (1) to minimize cardinality of the set 
SS  95 

 96 

 *

ˆ

arg min # S
F

F=S . (3) 97 

The fulfillment (3) is equivalent to the condition 98 

 99 

 
( )

( )* *

ˆ ˆ,

arg min # ,S
A B

A B=A .  100 

We do not specify the class of parametric identification methods, since set 
SS  elements determine 101 

their type. The identification criterion # SS  choice reflects the non-standard and complexity of the 102 

problem. 103 
The structural identification issue is complex and requires solving many subtasks. An overview 104 

of the solution methods is given below. The structural identification issue is complex and requires 105 
solving much subtasks. We give a solution method overview below. Other statements of the SI 106 
problem know [7]. 107 

4. Requirements for Model Structure 108 

Three groups of factors are decisive for the model structure choice [7]: 1) ensuring the maximum 109 
quality of the restored model; 2) the calculation amount minimizing in the model synthesis. 110 

5. On SI Difficulties of Static Systems 111 

Static frameworks (SF) propose in a special structural space [25, 26]. SF analysis allows deciding 112 
about the nonlinearity class in static systems (SS). Explain the need to allocate a structural space for 113 
the nonlinear SS by following reasons [27]: 114 
• the system output is an integrated quantity reflecting the influence of the input variable set; 115 
• the method absence of the input-output relationships identification in the nonlinearity type 116 

classification problem. Approaches to degree nonlinearity assessing of the system described in 117 
[1, 4]. Nonlinearity degree estimating is the key to class choosing of nonlinear static models. The 118 
solution bases on the complex mathematical apparatus use, which does not always offer an 119 
approach to SI; 120 

• nonlinear structure a priori assignment [5, 28, 29], based on a set of existing inputs and a 121 
parametric approach, requires solving the multicollinearity problem [30, 31]. The problem is 122 
complex, and the applied solution is simple. The solution is the result of the model practical 123 
implementation. A simple solution is the exclusion of dependent variables, which use very 124 
widely used in real control systems, but this solution closes the way to considering the SI 125 
problem. This relationship does not always understand and is not considered in existing 126 
methods; 127 

• application of parametric methods based on the polynomial given class use [28, 29, 32]. The 128 
effectiveness of this approach depends on the experience and intuition of the researcher. This 129 
approach requires preliminary labor-intensive research. It does not allow determining the 130 
nonlinearity structure explicitly. 131 
These problems explain the existing state of SI static systems. Despite the apparent simplicity of 132 

the SS mathematical description, its analysis requires the design and application of non-trivial 133 
approaches and methods [26, 27]. Designed methods should resolve existing contradictions. 134 
Contradictions have structural form and associate with multicollinearity, correlation, lag, etc. The SI 135 
problem is insoluble when the parametrization paradigm dominates. The parametric approach is a 136 
powerful tool for solving control tasks. The parametrization problem is secondary in SI tasks. This 137 
should understand when designing SI procedures under uncertainty. Only the model structure 138 
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correct choice allows to go to solve the parametric estimation problem. Such a relationship is not 139 
always understood and requires the use of various procedures to compensate for emerging 140 
uncertainties. Note that collinearity (COL) is a problem that cannot solve by parametric methods. But 141 
this does not mean that COL is a “parasite” and it should not use in system structure assessment. 142 
COL is a structural indicator. Only the information set analysis of the system is a condition for 143 
obtaining structural indicators. This is a non-trivial task. But it has a solution. Its solution got in a 144 
structural space [25, 26], which does not always contain system variables. A static framework [26] 145 
defined on a generalized variables and parameters set defines in this space. Framework changes 146 
analysis and evaluation of its parameters decided about nonlinear processes in the system. 147 

Consider methods for evaluating the structural parameters of control objects. Evaluation of 148 
structural parameters bases on the indirect methods use. 149 

6. Model order estimation 150 

Different approaches used to estimate of the model order [1]. The following classification 151 
corresponds to the methods. 152 
1. Spectral characteristics study of the transfer function (TF). 153 
2. Checking the ranks of sample covariance matrices. 154 
3. Correlation of variables. 155 
4. Analysis of the information matrix. 156 

1. Spectral-analytical estimates. If TF contains information about the of resonant peak 157 
magnitude, high-frequency slices, or phase shifts, then this information is the basis for the model 158 
order choose [33-35]. 159 

2. Checking the ranks of sample covariance matrices. This approach bases on the fact [1] that a 160 
regression model with the variables vector synthesizes. Implement the matrix 161 

 , ,

1

1
( )

N
T

q q i q i

i

P N
N =

=   , (4) 162 

where N  is data sample length, q  is evaluation of the system order. If the system input is constantly 163 

excited, then the matrix ( )qP N  is non-degenerate at q m  and degenerate at q m . Therefore, 164 

det ( )qP N  [36] can use to statistical hypothesis test and decide about the system order. The 165 

relationship study between the matrix (4) degeneracy and the model order given in [37], and the 166 
algorithm for the estimation method implementing proposes in [36]. If there is interference, then enter 167 
a threshold for applying the matrix ( )qP N  to minimize the interference effect with a large amplitude. 168 

The matrix (4) modification proposes. If the signal-to-noise ratio is small, then in [36] 169 

 2ˆ ( ) ( )q qP N P N P = − , (5) 170 

where 2P   allows for the interference   effect on ( )qP N . 171 

Various models use the object order estimate under uncertainty. Models of various orders use 172 
for the object order estimate under uncertainty. Next, an error criterion [38] introduced, which allows 173 
selecting the model of required order. This approach is time-consuming and imposes certain 174 
requirements on the researcher qualifications. If the model order decides too small, then smoothed 175 
spectral estimates get. If the order is too large, then the spectrum resolution increases, and this leads 176 
to the appearance of false peaks in the spectrum. Therefore, if evaluating the autoregressive model 177 
order, then a compromise must observe between the resolution and the variance amount for classical 178 
spectral estimation methods. The variance residuals influence on the model order choice [38] as well. 179 
The Akaike criterion (AC) [38, 39] uses to identify of the model order often. There are various AC 180 
modifications. The first criterion allows estimating the final prediction error. The autoregressive 181 
model order choice bases on minimizing of the error average variance at each prediction step. The 182 
criterion for the autoregressive process has the form [38] 183 

 
( )
( )1

1
ˆ( )

1
m

N m
Q m

N m


+ +
=

− +
, (6) 184 
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where N  is data number, m  is model order, ˆ
m  is white noise dispersion estimation. Centered 185 

values of variables used to estimate the error variance in (6). The second multiplier on the right side 186 
(3) increases if the model order increases. This increases the error variance. Therefore, the model 187 
choice with the order m  should give a minimum

1( )Q m . The application 
1( )Q m  gives an 188 

underestimated value of the model order [40, 41]. 189 
The second Akaike criterion or Akaike Information Criterion (ICA) base on the maximum 190 

likelihood method. According to this criterion, the model order determines based on the 191 
minimization of some information-theoretic function. If the data have a normal distribution, then the 192 
ICA has the form [38, 42] 193 

 ( )2
ˆ( ) ln 2mQ m N m= + . (7) 194 

The second term in (7) characterizes the fee for the use of additional AR coefficients. Such 195 
representation of the criterion does not reduce the prediction error variance. The model order 196 
determined from the minimization condition 

2 ( )Q m . Criteria (6) and (7) are asymptotically 197 

equivalent for N → . 
2 ( )Q m  gives good results for ideal AR-processes. 

2 ( )Q m  has the same 198 

problems as 
1( )Q m . ICA is statistically untenable [43], which overestimates the values of the model 199 

order at N → . Following criteria used to evaluate the order of the model also: 200 
• Bayesian information criterion or Schwartz criterion [46] 201 

 ln 2lnBIC SC m N L= = − , (8) 202 

where L  is the maximum likelihood function value for the estimated model; 203 
• Hannan-Quinn Information Criterion [47] 204 

 ln 2 ln
ECC

HQC N m N
N

= + , (9) 205 

where ECC  is the squared deviation sum. 206 
• There know modifications of criteria (6) - (9), which are used for the synthesis of various models. 207 

We do not consider the interesting direction of choosing the model order for a system with lag 208 
variables (LPS). The LPS main problem is to minimize the number of model parameters, and, 209 
consequently, the model order. Various schemes for approximating the vector of model parameters 210 
proposed for LPS under a priori information. Parametric schemes of I. Fischer [50], L.M. Koyck [30], 211 
S. Almon [51] (a modified Fischer model) widely use. Durbin-Watson and von Neumann statistics 212 
[30] used to verify the of the model order estimation. Under uncertainty, the use of these schemes is 213 
associated with solving problem series. A functionally multiple approach proposes for the structural 214 
identification of discrete LPS in [52]. The decision on the LPS structure bases on the analysis of special 215 
frameworks (SF). It is shown that the distributed lag can be interpreted as nonlinearity. The second 216 
order secant for SF is a criterion for deciding on the lag length. The approach [52] applies for choosing 217 
the model order containing lags for input, output variables, and their combinations. 218 

3. Correlation of variables (VC). VC related to the choice of variables included in the model. 219 
Choice of variables indirectly affect the model order. The problem solves by determining a correlation 220 
between the output and the candidate-variable to include in the model. Correlation indicators are an 221 
indicator for including lag variables in the autoregressive model. The method of canonical 222 
correlations or partial correlation [31, 48, 49] is the basis for an indirect order estimation. 223 

4. Analysis of the information matrix. The information matrix ( )qP N  is the analysis main object 224 

in the modern theory of identification. Properties ( )qP N  influence on the parametric estimation 225 

problem solution. As shown in [1], if estimates of the model order overestimate, then the system is 226 
unidentifiable. Hence, the matrix ( )qP N  has an incomplete rank. The model order revaluation issues 227 

based on the analysis of the information matrix consider in [53-56]. 228 

Remark 1. The constant excitation property ,

S

 PE  associates with the information matrix ( )qP N229 

. T3 determines the evaluating possibility of system parameters. As recent studies show [57], the 230 

,

S

 PE  property does not guarantee the structural identification and identifiability of a nonlinear 231 

system. ,

S

 PE  should guarantee the system S-synchronizability. 232 
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Other approaches apply to estimate the model order [58]. They not coincident with the 233 
considered paradigm. They give the indirect estimate of the system order. The eyS -framework 234 

method (SFM) uses to estimate the order of a dynamic system. SFM consider below. 235 

7. System nonlinearity degree 236 

The model structure choice bases on the system linearity (nonlinearity) class evaluation. The 237 
system nonlinearity degree estimation bases on the use of correlation and variance analysis [59]. 238 

In the general case, the regression between the output ( )Y t  at time t  and the input ( )X s  at time 239 

s  of the system be some curve. Estimate the regression  t sM Y X  nonlinearity as the mean square 240 

deviation of this curve from some straight line. Evaluate the regression 
tY  nonlinearity degree relative 241 

to 
sX  as [59] 242 

 
  ( ) 

 

2

( , ) ( , )
min ( , ) ( , )

( , )
( )

t s s
a t s b t s

yx

M M Y X a t s b t s x
n t s

D Y t

 − + 
= , (10) 243 

  
 

 
 

( )
( , ) ( , )

( )
t xx s

D X t
a t s M X R t s M X

D X s
= − , (11) 244 

 
 

 

( )
( , ) ( , )

( )
xx

D X t
b t s R t s

D X s
= ,  (12) 245 

where  ( )D Y t  is variance of a random function ( )Y t ,  t sM Y X  is conditional mathematical 246 

expectation of a random function ( )y t  relative to a random function ( )x s , ( , )xxR t s  is normalized 247 

correlation function. 248 
The minimum in (10) is reached for ( , )a t s  and ( , )b t s  satisfying (11), (12). We obtain the 249 

nonlinearity degree estimate from (10) - (12) 250 

 2 2 2( , ) ( , ) ( , )yx yx yxn t s t s R t s= − .  251 

It is noted in [1] that the nonlinearity degree estimation is a sign for decision-making about the 252 
model structure. Further, the correlation and variance analysis development given in [60-64], where 253 
higher-order correlation functions used to calculate the of nonlinearity degree. The review [64] 254 
contains the current state of this problem. The approach to nonlinear static system structure choosing 255 
is proposed in [25]. It bases on the identification power evaluation for the system structural 256 
coefficient. The identification power is an assessment indicator of the nonlinearity degree. 257 

8. LPS structural identification 258 

Models with lag variables (LV) widely use in econometrics and economics [30, 63-65], 259 
engineering [25, 66, 67] and medicine [68-70]. The delay can have independent or dependent 260 
variables. LV considering leads to autocorrelation between variables [29, 61, 63] and complicates the 261 
process of identifying system parameters. The discrete system model structure choice bases on 262 
various schemes of approximation parameter at LV [30, 50, 51]. This approach reduces the number 263 
of estimated parameters [71]. 264 

The approach to structural identification based on approximation schemes of parameters for LV, 265 
widely use in econometrics. The system model with LV at input has the form [65] 266 

 
0

k

n i n i n

i

y x −

=

= + , (13) 267 

where 
i  are constants that are not equal to zero at the same time, 

nx  is input variable, 
n  is a 268 

random variable independent of 
ix  and haves zero mean and constant variance. 269 
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As a rule, the parametric scheme choice bases on a priori information. The scheme chose so that 270 

the input variable influence at time 0n =  is the most significant. So, the sequence 
0 1, , , k    [63] 271 

containing the first terms of the series is increasing. If the maximum 
0 1, , , k    reached, then the 272 

sequence should decrease. Considering this, I. Fischer [63, 70, 72, 73] proposed changing M2 based 273 
on a decreasing arithmetic progression 274 

 2

2
1

1
i

i

k
 

− 
= − 

− 
, 2 i k  . (14) 275 

where 
0 , 

1  are any numbers, 0q  , 1i

i

q = . So, the task reduced to the evaluation of parameters 276 

0 , 
1 , 

2  and k . S. Almon [52, 68, 69] modified I. Fischer's model applied the polynomial law for 277 

coefficient variation. 278 
The Koyck’s scheme is widely used [30, 73]. Model coefficients change on decreasing geometric 279 

progression 280 

 2

2 , 2.3, ,i

i q i  −= =  . (15) 281 

Schemes (14), (15) are applicable to the time series only when 
i decrease, starting from the first 282 

terms. Laws (13), (14) do not work on small samples. 283 

Conditions for iq  can be interpreted as some probability distribution on a set of non-negative 284 

integers. Therefore, iq  can be formally considered as the probability assigned to the integer i . This 285 

idea gave direction to the development of parametric laws for 
i  based on probability theory on 286 

non-negative integers. The scheme with a logarithmic normal distribution proposes for iq  [72]. iq  287 

interprets as the probability that a normal variable with mean   and mean square deviation   288 

belongs to  ln( ), ln( 1)i i + . The distribution laws assignment for iq  considers in [74]. Other 289 

approaches to the construction of parametric schemes for LV describes in [65, 72, 75, 76]. 290 
Considered parametric schemes minimize the number of unknown parameters. The least 291 

squares method or its modifications use to estimate system parameters [30, 63-65]. The model 292 
structure sets a priori and the parametric identification problem solves. An interactive algorithm [77] 293 
for parameters estimating static system with LV proposes. The lag length set and parametric schemes 294 
are not applied. The maximum lag length choice based on the analysis of residues considers in [63, 295 
74, 78]. The a priori uncertainty influence on the structure selection and parameters of the system has 296 
not studied. 297 

In [26, 79], the structural identification method proposes for systems with a distributed lag under 298 
uncertainty. The method bases on the use of virtual frameworks (VF) reflecting of system properties 299 
[26]. The object linearity criterion introduces. Algorithms for distributed lag maximum length 300 
determining propose. They do not require the calculation of statistics. The Durbin-Watson criterion 301 
analogue for this case obtains. Changing laws of the system parameters not set a priori. The lag length 302 
choice bases on the VF analysis [79, 80]. The proposed approach is generalized to a class of 303 
autoregressive models. 304 

9. Structural identifiability of systems 305 

The identifiability problem relates to the estimate possibility parameters of a dynamic system. 306 
The approach to the identifiability assessment bases on the R. Kalman ideas [81]. Further 307 
development of these ideas gives in [37, 83]. R. Lee [37] gives the following definition of 308 
identifiability. 309 

Consider the system 310 

 1 ,

,

n n

T

n n

X AX

y C X

+ =

=
 (16) 311 

where m

nX R is vector state, m mA R , 
ny R  is output system,  0,nn N= =J  is discrete time. 312 
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Problem: determine the conditions under which the system is identifiable based on 313 

 , 0, ,o ny n N N= =  I . 314 

For the case m

ny R , the following sufficient and necessary conditions are given in [37]. 315 

Definition 1. The system (16) is identifiable if the matrix A  is n -determined based on the vector 316 
X  measurement. 317 

Definition 2. The system (14) is called 1-identifiable if the matrix A  is determined based on the 318 
measurement .y  319 

The n -identifiability condition is satisfied if the matrix 2 1

0 0 0 0

mX AX A X A X−    is non-320 

degenerate. 321 

The 1-identifiability condition: 1. System (16) is n -identifiable. 2. The pair ( ),A C  is observable. 322 

In [37, 79], the identifiability case considers when the dynamical system order is less than m  . 323 
The analysis of publications shows that identifiable evaluation of the system (16) performed in 324 

a parametric space. Call it IP-Identifiability (IPI). The IPI is being studied by many authors. The 325 
identifiability results [37,82, 84] are presented in the form accepted in parametric estimation issues. 326 

The concept of structural identifiable, not based on IPI, introduces in [84]. Consider two dynamic 327 
systems ( )1 1 1 1, ,S U Y A , ( )2 2 2 2, ,S U Y A  with inputs 

1 2,U U , outputs 
1 2,Y Y  and parameters 

1 2,A A . The 328 

systems describe by models ( )1 1 1 1
ˆˆ, ,U Y AM  and ( )2 2 2 2

ˆˆ, ,U Y AM . 329 

Definition 3 [84]. If condition ( ) ( )1 2 2
ˆ ˆA A1M M  hold for 

1 2U U= , 
1 2Y Y=  and 1 2

ˆ ˆA A , then the 330 

1M , 
2M  models are indistinguishable from the observed inputs and outputs. 331 

Definition 4 [37, 84]. The parameter 1, 1
ˆˆ

ia A  calls structurally globally identifiable if the 332 

condition ( ) ( )1 1 2 2 1, 2,
ˆ ˆ ˆ ˆ

i iA A a a  =M M  satisfies for almost any 2
ˆ

PA  , where 
P  is parametric 333 

space. 334 

Definition 5 [84]. The parameter 1, 1
ˆˆ

ia A  is structurally locally identifiable if a neighbourhood 335 

( )2 2
ˆO A  exists such that ( ) ( )1 1 2 2 1, 2,

ˆ ˆ ˆ ˆ
i iA A a a  =M M  follows from the condition ( )1 2 2

ˆ ˆA O A  for 336 

almost any 
2
ˆ

PA  . 337 

Local identifiability is a necessary condition for global identifiability. A parameter that is 338 
structurally locally identifiable but is not structurally globally identifiable is called structurally 339 
globally unidentifiable. Various approaches and methods can use to verify structural identifiability 340 
[85, 86]. The concept of local parametric identifiability and local identifiability at a point introduce in 341 
[87] and given its theoretical justification. 342 

Remark 2. Most of the works devoted to identifiability do not consider the SI problem. 343 
Therefore, the structural identifiability concept does not reflect the SI problem essence. This 344 
terminology actively uses in tasks of assessing identifiability. Therefore, we use this terminology to 345 
continue analyzing obtained results. Next, a concept introduces that directly relates to the structural 346 
identifiability of nonlinear systems in a structural space. 347 

In [87], criteria for assessing the local identifiability of a linearized system (16) proposes. The 348 
state matrix rank is m . For a heterogeneous linear system, the method for estimating local 349 
identifiability based on the evaluation of the Lyapunov exponents has developed. In [88], parametric 350 
identifiability criteria introduce and results obtained in [87] generalized. Complete identifiability 351 
conditions of a linear stationary system from discrete measurements are obtained in [89, 90]. 352 

The IPI of nonlinear systems study by many authors (see, for example, [89-92]). Approach [90] 353 
based on the system output sensitivity study uses for the identifiability analysis. The approach 354 
effectiveness shows in the identifiability study of a parameter combination. In [89], parametric 355 
identifiability local conditions were obtained for various measurement variants of experimental data. 356 
In [89], local conditions of parametric identifiably obtain for set experimental data. Joint observability 357 
and identifiability conditions of a linear stationary system consider. A critical analysis of the 358 
approaches used to the identifiability estimate of biological models give in [91]. Models for 359 
identifiability estimation of nonlinear systems based on Taylor series expansion, identifiability tables, 360 
differential algebra consider. Analysis of practical identifiability (PRI) gives in [92]. PRI is based on 361 
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the experimental information analysis and the differential algebra application. PI bases on the least 362 
squares method, simulation results, and the sensitivity analysis of the model to parameter estimates. 363 
The approach is applied to the biology tasks. 364 

In [93], identifiability issues of a model described by a system of simultaneous equations 365 
consider. The concept of observably equivalent systems with structure S  introduces. The concept of 366 
an identifiable parameter in the S -structure of the system introduces. The state matrix rank is the 367 
identifiability condition. 368 

So, the model identifiability understands as the possibility of evaluating its parameters. The 369 
proposed methods base on the information matrix non-degeneracy evaluation. Similar results 370 
obtained in the parametric estimation theory.   Checking the non-degeneracy (completeness of the 371 
rank) of the matrix bases on ensuring the excitation constancy for the input and output of the system. 372 
As a rule, the model structure sets a priori. Therefore, it is not always clear how to understand 373 
structural local identifiability. The structure concept widely uses in the assessment of identifiability. 374 
The nonlinear system identifiability reduces to parametric identifiability problem based on the 375 
application of various linearization methods. This approach does not consider the structural 376 
identifiability problem and does not answer the question: how to decide about the nonlinear system 377 
structure under uncertainty? The task was not set in this form. The answer to this question bases on 378 
the VF analysis and the h -identifiability concept [94]. 379 

Consider the system 380 

 
( ) ,

,

u

T

X AX B y B u

y C X

= + +

=
 (17) 381 

where uR , yR  are input and output; q qA R , q

uB R , qB R , qCR ; ( )y  is scalar 382 

nonlinear function. A  is the Hurwitz matrix. 383 
Information set 384 

   0( ), ( ), ,o ku t y t t t t=  =I J .  385 

Problem: estimate the system (17) structural identifiability (IS) based on the I3 analysis and 386 
processing. 387 

Remark 3. It is shown in [57], the problems of structural identification and structural 388 
identifiability for nonlinear systems interrelate. Structural identification follows from structural 389 
identifiability. 390 

The IS estimation bases on the framework eyS  analysis that reflects properties of the nonlinear 391 

part (17). The constructing eyS  method describes in [94, 95]. The analysis eyS  related to the IS problem 392 

solution for the system (17). To distinguish the approach described below from IPI-identifiability, we 393 
use the term h -identifiability (HI) below. 394 

Definition 6. Call the input ( )u t  representative if: 395 

(i) The set oI provides a solution to the parametric identification problem. 396 

(ii) Input ( )u t  provides an informative framework ( ),ey N gIS . 397 

If ( )u t  is representative, then eyS  is closed. Denote the eyS  height ask ( )eyh S  where height is the 398 

distance between two points on opposite sides of the framework eyS . Let ,N gI  is a set for making a 399 

decision about the system structure. Its construction method is described in [94, 95]. 400 
Statement 1 [96]. Let (1) the system (17) linear part is stable, and the nonlinearity ( )   belongs 401 

to the sector ( )0 1,k k ; (2) ( )u t  input is bounded, piecewise continuous, and continuously excited; (3) 402 

there is 0S  0S   such that ( )ey Sh S . Then the framework eyS  is identifiable on the set ,N gI . 403 

Definition 7. The eyS -framework satisfying conditions of statement 1 is HI. 404 

The features of the h -identifiability concept consider in [94]. 405 

Remark 4. Not every input satisfying the ,

S

 PE  condition guarantees the system SI. In 406 

particular, the input can give the so-called "insignificant" eyS -framework ( eyNS -framework) [94]. 407 
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The decision on SI (structural identifiability) bases on checking the S-synchronizability [57] 408 
condition of the system. The verification bases on the analysis of eyS  structure properties. 409 

Definition 8. Input ( )u t U  is called S-synchronizing system (17) if the definition domain yD  410 

of the framework eyS  has a maximum diameter yD  on the set ( ),y t tJ . 411 

S-synchronizability guarantees structural identifiability (SI) or the system (17) 
h

h -identifiability. 412 

Definition 8 shows if the system (17) is 
h

h -identifiable, then the framework eyS  has a maximum 413 

diameter of the region yD . The criteria of 
h

h -identifiability verifying for the system (17) presents in 414 

[94, 95, 116, 117]. 415 

10. Identification and identifiability of Lyapunov exponents 416 

Lyapunov exponents (LE) are widely used to analyse the qualitative behaviour of dynamical 417 
systems. LE gives behaviour estimates of systems and processes in physics [97], medicine [98], 418 
economics [99], astronomy [100]. Most often, LE is determined based on time series analysis. It is 419 
believed that a priori information about the system structure is known. The conclusion made about 420 
the structural features of the system on the LE analysis basis. The emergence of systems with 421 
changing structural properties is an impetus to the development of research on LE. The main focus 422 
is on calculating the largest (highest, maximum, first) LE (LLE). 423 

An LLE calculation overview presented in [101] for various classes of systems. An LE estimation 424 
algorithm proposes for an unknown dynamical system in [102]. It calculates all LE. 425 

Various algorithms applied to LLE calculate the of non-stationary systems based on 426 
experimental data. The application of these algorithms is based on the Takens theorem [103]. F. 427 
Takens showed that the system phase portrait (attractor) can restore (reconstructed) based on a single 428 
time series (experimental data). Therefore, the theorem is the basis for calculating various indicators 429 
of a dynamic system. LE has such the indicator. Estimate LLE obtains using the Wolf [104] and 430 
Rosenstein [105] methods (RWM). Many authors generalize and develop RWM. LLE is calculated on 431 
the basis of logarithm and interpolation of a time series [106]. It is shown that the best results for 432 
stationary systems obtain by the Rosenstein method and the interpolation algorithm, and for non-433 
stationary systems by the interpolation algorithm. A model [106] containing the product of an 434 
exponent and a phase-shifted sine wave uses to compensate for the non-stationary component in the 435 
data. This procedure is not applicable for LE identification to non-stationary systems, since it removes 436 
a valuable information layer. Note that the Rosenstein method [105] is a time-consuming procedure 437 
associated with the selection and refinement of system parameters. In [107], a neural network 438 
algorithm proposes for LLE estimating. It bases on the use of a multilayer perceptron. 439 

Two main methods are used to evaluate Lyapunov exponents on a time series [108]. These 440 
procedures base on a previously reconstructed attractor by the Takens method. The first method [104] 441 
determines two close trajectories in the reconstructed phase space and tracks their behaviour over a 442 
certain time interval (the Benettin algorithm [109]). The Lyapunov exponents spectrum (LES) 443 
evaluation performs similarly to the LE estimation according to the original system of equations 444 
together and the equations in variations. The main advantage of this method is its relative simplicity, 445 
and the disadvantage is the identifying difficulty of the full LES. 446 

The determining role when considering two close trajectories plays by the LLE. The second 447 
method [110, 111] bases on the Jacobian calculation, since the LE can define as the eigenvalues of the 448 
Jacobi matrix for the system that generated the time series. The advantage of this method is the 449 
estimation of non-negative LE for the short time series, and the disadvantage is high sensitivity to 450 
noise and errors. 451 

The Takens theorem application depends on the properties of the time series [112]. The 452 
properties of the series effect on the effectiveness of the criteria used to evaluate attractor. This 453 
explains the implementing complexity of LE identification methods. 454 

So, modifications of Rosenstein, Benetton, Wolf methods and the Takens theorem widely use to 455 
LE identification of stationary systems. The properties of the time series describing variables of the 456 
system effect on the accuracy of the obtained LE estimates. Various modifications that consider a 457 
priori information to simplify the use of these methods. As a rule, the methods give an estimate for 458 
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LLE. Non-stationary systems (NSS) have their own peculiarity [113]. In particular, they contain the 459 
spectrum of Lyapunov exponents. Therefore, further modification of approaches and methods 460 
discussed above is required for NSS. Not always, criteria offer for verifying the received solutions. 461 

An approach to the LE identification based on the VF analysis proposes in [114, 115]. 462 
Frameworks describe the LE dynamics in the stationary dynamical system under uncertainty. The 463 
proposed approach essence. Consider the system 464 

 
,

,T

X AX Bu

y C X

= +

=
 (18) 465 

where mX R  is state vector, uR , yR  are input and output of system, m mA R , mBR , 466 
mCR , A  is the Hurwitz matrix. 467 

Analyze the information set 468 

   0 1( ), ( ), ,o y t u t t t t=  =I J   469 

and obtain vector ˆ ˆ ˆ( ) ( ) ( )
T

g g gX t y t y t =
 

, where ˆ ˆ( ), ( )g gy t y t  are estimates of the system (18) free 470 

motion by output and derivative. 471 
Apply formulas to determine LE [110] 472 

 

ˆln ( )
ˆ lim ,

ˆln
ˆ lim ,

g

g
t t

g

g
t t

y t
y

t

y
y

t





→

→

  = 

  =
 

 (19) 473 

where lim
t→

 is limit superior, gt J  is the t   maximum value (upper bound) on the interval g J J . 474 

Introduce functions g gt  J J  475 

 ( )ˆ ˆln ( )g g gy y t = = , 
( )ˆ

( , )
g

s

y
k t

t


 = ,  476 

where  0 ,g t t=J  determined in accordance with (19). 477 

Consider the sets 478 

 ( )( ) ˆ, ( ) ,
sk s g gk t y t t= I J , ( )( ) ˆ, ( ) ,

sk s g gk t y t t = I J ,  479 

introduce representation 
,s s sk k k  S I I  and a function describing the change of the first difference 480 

ˆ( , ( ( ))s gk t y t  on the set 
sk I  481 

 ( )( ) ( )( )ˆ ˆ( , ) , ( ) , ( )s s g s gk t k t y t k t y t    = + − ,  482 

where 0  . 483 

Form the set ( )( ) ˆ, ( ) ,
sk s g gk t y t t =  I J and introduce the mapping (framework) 484 

, , ,s s sk k k     SK I I . Consider the ( )
, , ,s s sk k kB
     LSK I I  transformation for the 

,sk SK  framework, 485 

where ( )  
,

1;1
skB
  −I . Elements of the binary set 486 

 
1, ( ) 0,

( )
1, ( ) 0,

s

s

if k t
b t

if k t

 
= 

−  
  gt J .  487 

Theorem 1 [115]. The system (18) has the order m  if the function ( )b t  changes sign 1m −  times 488 

on the interval *

0 , gt t    J  ( )*t t . 489 
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Form the set ( )( ) ( )ˆ, ( ) ,i
s

i

s g gk
k t y t t= I J , where i  denotes the i th derivative ˆ ( )gy t , and 490 

introduce the mapping 
,

i i
ss s

kk k

 SK I I . We obtain the spectrum structure for system (18) matrix A  491 

eigenvalues [113]. The lower Lyapunov exponents are Perron exponents (PE). Algorithms for PE 492 
calculating are given in [114]. 493 

An important problem related to the LE structural identification is the ability to detect and 494 
identify LE. This problem has not been raised or discussed. For the first time, the problem formulation 495 
and methods of its solution were proposed for linear and non-stationary systems in [57, 116, 117]. 496 

11. Identification of parametric constraints in static systems under uncertainty 497 

Parametric constraints (PC) are the basis for creating effective identification and management 498 
systems. In identification systems, the consideration of constraints reflects the actual operating 499 
conditions and guarantees the use of robust parametric estimation algorithms. Therefore, PC is the 500 
structure element of the system. 501 

Many authors study the application of parametric constraints in identification systems. The 502 
general method of moments (GMM) [118] is used to design the model for estimating the main asset. 503 
Two kinds of restrictions impose. These are restrictions on the variable current value and on the 504 
maximum value for the variable in a certain interval. The limit on moment set a priori. GMM [119-505 
121] uses to determine the relationship between PC and parameter stability. The constraint is the 506 
equality at the moment. In [122], the electromagnetism process identification problem study, 507 
considering the physical limitations on the parameters. The problem solution given by the 508 
Levenberg-Marquardt iterative algorithm. Constraints set a priori as lower and upper bounds for 509 
parameters. The correcting problem of boundaries of constraints considered. The parametric 510 
identification problem [123, 124] study for a dynamic object with ellipsoidal parametric constraints. 511 
A heuristic algorithm for solving the problem is proposed. As shown in [123], there is some indefinite 512 
quadratic constraint, depending on the level of uncontrolled noise in the finite data. Constraints are 513 
set a priori. The parameter estimation of the polynomial model, based on an ellipsoidal algorithm, 514 
solves in [125]. Process analysis is the basis for setting constraints on parameters. A heuristic 515 
algorithm uses. A static object identification considers in [126]. The domain of parametric constraints 516 
sets a priori. The a priori defined PC area influence on the properties of the model describing electrical 517 
muscle stimulation gives in [127]. It is noted that ignoring PC effects on results of parametric 518 
evaluation. The correction case of restrictions considers. It is shown that consider constraints 519 
improves the predictive properties of the model. The identification algorithm of a dynamic object 520 
with a priori set PS in the equality form proposes in [128]. The identification algorithm bases on the 521 
variational method of optimizing the Hamilton function. In [129], the identification procedure of 522 
system with feedback proposes. The procedure improves parameter estimates based on the use of 523 
constraints. It is shown how to form constraints based on a priori data about the object. The using a 524 
priori knowledge problem about an object considers in [130]. A priori information presents as 525 
constraints for a nonlinear system. In [131], the problem of estimating parameters studies on base 526 
quadratic constraints. Physical assumptions and the regularization method used to form constraints. 527 
Identification algorithms proposed, and their implementation shown. In [132], the PC estimation 528 
problem for vibration damping in nonlinear control systems considers. The analytical method is used 529 
to determine the constraints. The method bases on the selection of characteristic polynomial roots for 530 
a closed system of the 4th and 5th orders. The system model is set a priori. 531 

Some approaches to PC obtaining consider in [26, 58]. A method for obtaining PC for a dynamic 532 
linear system is described. It is based on the analysis of the observed information portrait. The domain 533 
of parametric constraints (PCD) interprets as an inequality from above on the parameter vector norm. 534 
Its assessment bases on the majority model.  535 

The analysis shows that PC often use in the synthesis of identification systems. Often, PCD sets 536 
a priori. APO correction algorithms have a heuristic form. The PCD construction task was not 537 
considered under uncertainty. There is a class of complex objects, and we cannot set the PCD a priori 538 
for them. The solution to this problem is relevant for these systems. 539 

In [26, 133], the PCD construction approach proposes for static systems under uncertainty. 540 
Various approaches consider for describing the PCD. They base on the dominance concept and the 541 
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analysis of special structures for linear static systems. Various methods propose for solving the OPO 542 
synthesis problem in [26, 134]: (a) dominance condition verification and application of a criterion 543 
based on the average value evaluation of variables; (b) the model parameter vector adjustment in 544 
combination with approach (a); (c) a finite-convergent algorithm for determining PCD parameters. 545 
Majorizing estimates obtain for PCD. If a disturbance act, then the dominance acceptable level 546 
concept is the basis for decision-making about PCD. 547 

12. Approaches to choosing model structure 548 

In identification theory, approaches based on the parametrization are widely used to select the 549 
model structure. The implementation of this methodology base on the use of various approximation 550 
schemes [135-139]. The autoregressive model structure choice bases on the use of Volterra series and 551 
group method of data handling [136]. Combined schemes [6, 140] used to increase the of decision-552 
making efficiency. 553 

The review [7] contains an analysis of methods for selecting the model structure based on the 554 
use of training and examination signals. Decision-making bases on the application of various criteria. 555 
Note that applied approaches use a priori information. An iterative approach [2] proposes for the 556 
design of forecasting and management models. The algorithm implements structural identification 557 
on a given class of models. The structure estimating problem of the autoregressive model on a defined 558 
class considers in [6]. Various criteria for selecting the class of models and rules for testing hypotheses 559 
considers. The curve linearization method [28] uses to select the structure of regression models. The 560 
linearization method of static dependence in structural space proposes in [24, 25]. Other approaches 561 
to the structural identification of linear dynamical systems consider in [7]. VF ( eyS -framework) 562 

analysis method [18, 79, 94, 95, 114, 115, 141] is the most adequate approach to choosing the model 563 
structure. 564 

13. Conclusion 565 

Structural identification various aspects considered. We show that the problem is multifaceted 566 
and includes various directions. There are many approaches to solving various aspects of the 567 
structural identification problem. Most of them based on consideration of a priori information. 568 
Indirect approaches are the basis for evaluating the model structure. It makes difficult to design a 569 
common approach to solving this problem. 570 
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